Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(1): e0294842, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170710

RESUMEN

Evidence from a variety of organisms points to convergent evolution on the mitochondria associated with a physiological response to oxygen deprivation or temperature stress, including mechanisms for high-altitude adaptation. Here, we examine whether demography and/or selection explains standing mitogenome nucleotide diversity in high-altitude adapted populations of three Andean waterfowl species: yellow-billed pintail (Anas georgica), speckled teal (Anas flavirostris), and cinnamon teal (Spatula cyanoptera). We compared a total of 60 mitogenomes from each of these three duck species (n = 20 per species) across low and high altitudes and tested whether part(s) or all of the mitogenome exhibited expected signatures of purifying selection within the high-altitude populations of these species. Historical effective population sizes (Ne) were inferred to be similar between high- and low-altitude populations of each species, suggesting that selection rather than genetic drift best explains the reduced genetic variation found in mitochondrial genes of high-altitude populations compared to low-altitude populations of the same species. Specifically, we provide evidence that establishment of these three Andean waterfowl species in the high-altitude environment, coincided at least in part with a persistent pattern of negative purifying selection acting on oxidative phosphorylation (OXPHOS) function of the mitochondria. Our results further reveal that the extent of gene-specific purifying selection has been greatest in the speckled teal, the species with the longest history of high-altitude occupancy.


Asunto(s)
Genoma Mitocondrial , Genoma Mitocondrial/genética , Altitud , Flujo Genético , Mitocondrias/genética , Ambiente , Adaptación Fisiológica/genética , Selección Genética
2.
Mol Ecol Resour ; 24(2): e13892, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37966172

RESUMEN

Anthropogenic hybridization, or higher and non-natural rates of gene flow directly and indirectly induced by human activities, is considered a significant threat to biodiversity. The primary concern for conservation is the potential for genomic extinction and loss of adaptiveness for native species due to the extensive introgression of non-native genes. To alleviate or reverse trends for such scenarios requires the direct integration of genomic data within a model framework for effective management. Towards this end, we developed the simRestore R program as a decision-making tool that integrates ecological and genomic information to simulate ancestry outcomes from optimized conservation strategies. In short, the program optimizes supplementation and removal strategies across generations until a set native genetic threshold is reached within the studied population. Importantly, in addition to helping with initial decision-making, simulations can be updated with the outcomes of ongoing efforts, allowing for the adaptive management of populations. After demonstrating functionality, we apply and optimize among actionable management strategies for the endangered Hawaiian duck for which the current primary threat is genetic extinction through ongoing anthropogenic hybridization with feral mallards. Simulations demonstrate that supplemental and removal efforts can be strategically tailored to move the genetic ancestry of Hawaii's hybrid populations towards Hawaiian duck without the need to completely start over. Further, we discuss ecological parameter sensitivity, including which factors are most important to ensure genetic outcomes (i.e. number of offspring). Finally, to facilitate use, the program is also available online as a Shiny Web application.


Asunto(s)
Biodiversidad , Genoma , Animales , Humanos , Genómica , Hibridación Genética , Patos/genética , Conservación de los Recursos Naturales
3.
Mol Ecol ; 32(21): 5695-5708, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37795951

RESUMEN

Anopheles stephensi invasion in the Horn of Africa (HoA) poses a substantial risk of increased malaria disease burden in the region. An understanding of the history of introduction(s), establishment(s) and potential A. stephensi sources in the HoA is needed to predict future expansions and establish where they may be effectively controlled. To this end, we take a landscape genomic approach to assess A. stephensi origins and spread throughout the HoA, information essential for vector control. Specifically, we assayed 2070 genome-wide single nucleotide polymorphisms across 214 samples spanning 13 populations of A. stephensi from Ethiopia and Somaliland collected in 2018 and 2020, respectively. Principal component and genetic ancestry analyses revealed clustering that followed an isolation-by-distance pattern, with genetic divergence among the Ethiopian samples significantly correlating with geographical distance. Additionally, genetic relatedness was observed between the northeastern and east central Ethiopian A. stephensi populations and the Somaliland A. stephensi populations. These results reveal population differentiation and genetic connectivity within HoA A. stephensi populations. Furthermore, based on genetic network analysis, we uncovered that Dire Dawa, the site of a spring 2022 malaria outbreak, was one of the major hubs from which sequential founder events occurred in the rest of the eastern Ethiopian region. These findings can be useful for the selection of sites for heightened control to prevent future malaria outbreaks. Finally, we did not detect significant genotype-environmental associations, potentially due to the recency of their colonization and/or other anthropogenic factors leading to the initial spread and establishment of A. stephensi. Our study highlights how coupling genomic data at landscape levels can shed light into even ongoing invasions.


Asunto(s)
Anopheles , Malaria , Animales , Humanos , Anopheles/genética , Mosquitos Vectores/genética , Redes Reguladoras de Genes , Metagenómica , Malaria/epidemiología , Malaria/genética , Genómica , Etiopía
4.
Proc Biol Sci ; 290(2007): 20231466, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752838

RESUMEN

Diving animals must sustain high activity with limited O2 stores to successfully capture prey. Studies suggest that increasing body O2 stores supports breath-hold diving, but less is known about metabolic specializations that underlie underwater locomotion. We measured maximal activities of 10 key enzymes in locomotory muscles (gastrocnemius and pectoralis) to identify biochemical changes associated with diving in pathways of oxidative and substrate-level phosphorylation and compared them across three groups of ducks-the longest diving sea ducks (eight spp.), the mid-tier diving pochards (three spp.) and the non-diving dabblers (five spp.). Relative to dabblers, both diving groups had increased activities of succinate dehydrogenase and cytochrome c oxidase, and sea ducks further showed increases in citrate synthase (CS) and hydroxyacyl-CoA dehydrogenase (HOAD). Both diving groups had relative decreases in capacity for anaerobic metabolism (lower ratio of lactate dehydrogenase to CS), with sea ducks also showing a greater capacity for oxidative phosphorylation and lipid oxidation (lower ratio of pyruvate kinase to CS, higher ratio of HOAD to hexokinase). These data suggest that the locomotory muscles of diving ducks are specialized for sustaining high rates of aerobic metabolism, emphasizing the importance of body O2 stores for dive performance in these species.


Asunto(s)
Patos , Locomoción , Animales , Metabolismo de los Lípidos , Anaerobiosis , Músculos Pectorales
5.
Commun Biol ; 6(1): 819, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543640

RESUMEN

The translocation of individuals around the world is leading to rising incidences of anthropogenic hybridization, particularly between domestic and wild congeners. We apply a landscape genomics approach for thousands of mallard (Anas platyrhynchos) samples across continental and island populations to determine the result of over a century of supplementation practices. We establish that a single domestic game-farm mallard breed is the source for contemporary release programs in Eurasia and North America, as well as for established feral populations in New Zealand and Hawaii. In particular, we identify central Europe and eastern North America as epicenters of ongoing anthropogenic hybridization, and conclude that the release of game-farm mallards continues to affect the genetic integrity of wild mallards. Conversely, self-sustaining feral populations in New Zealand and Hawaii not only show strong differentiation from their original stock, but also signatures of local adaptation occurring in less than a half-century since game-farm mallard releases have ceased. We conclude that 'wild' is not singular, and that even feral populations are capable of responding to natural processes. Although considered paradoxical to biological conservation, understanding the capacity for wildness among feral and feral admixed populations in human landscapes is critical as such interactions increase in the Anthropocene.


Asunto(s)
Patos , Genómica , Animales , Humanos , Patos/genética , Europa (Continente) , Hibridación Genética , Cruzamiento
6.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37523777

RESUMEN

The mallard (Anas platyrhynchos) is one of the most common, economically, and socially important birds around the world. Mallards were not only an important food source for early humans but eventually becoming intimately linked with people as they were domesticated over the last 2,000 years. To date, mallard genomes are largely reconstructed from samples of domestic or unknown genetic heritage. Here, we report the first high-quality genome assembly and annotation of a genetically vetted wild mallard from North America (NAwild_v1.0). The genome was assembled using a combination of shotgun libraries, proximity ligation Chicago, and Dovetail Hi-C libraries. The final assembly is ∼1.04 Gb in size, with 98.3% of the sequence located in 30 full or nearly full chromosome-level scaffolds, and with a N50/L50 of 79.1 Mb/4 scaffolds. We used a combination of gene prediction and similarity approaches to annotate a total of 23,584 functional genes, of which 19,242 were associated to GO terms. The genome assembly and the set of annotated genes yielded a 95.4% completeness score when compared with the BUSCO aves_odb10 dataset. Next, we aligned 3 previously published mallard genomes to ours, and demonstrate how runs of homozygosity and nucleotide diversity are substantially higher and lower, respectively, to ours and how these artificially changed genomes resulted in profoundly different and biased demographic histories. Our wild mallard assembly not only provides a valuable resource to shed light onto genome evolution, speciation, and other adaptive processes, but also helping with identifying functional genes that have been significantly altered during the domestication process.


Asunto(s)
Cromosomas , Genoma , Animales , Humanos , Patos/genética , América del Norte
7.
PLoS One ; 18(3): e0282874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920978

RESUMEN

The genetic composition of mallards in eastern North America has been changed by release of domestically-raised, game-farm mallards to supplement wild populations for hunting. We sampled 296 hatch-year mallards harvested in northwestern Ohio, October-December 2019. The aim was to determine their genetic ancestry and geographic origin to understand the geographic extent of game-farm mallard introgression into wild populations in more westward regions of North America. We used molecular analysis to detect that 35% of samples were pure wild mallard, 12% were early generation hybrids between wild and game-farm mallards (i.e., F1-F3), and the remaining 53% of samples were assigned as part of a hybrid swarm. Percentage of individuals in our study with some form of hybridization with game-farm mallard (65%) was greater than previously detected farther south in the mid-continent (~4%), but less than the Atlantic coast of North America (~ 92%). Stable isotope analysis using δ2Hf suggested that pure wild mallards originated from areas farther north and west than hybrid mallards. More specifically, 17% of all Ohio samples had δ2Hf consistent with more western origins in the prairies, parkland, or boreal regions of the mid-continent of North America, with 55%, 35%, and 10% of these being genetically wild, hybrid swarm, and F3, respectively. We conclude that continued game-farm introgression into wild mallards is not isolated to the eastern population of mallards in North America, and may be increasing and more widespread than previously detected. Mallards in our study had greater incidence of game-farm hybridization than other locales in the mid-continent but less than eastern North American regions suggesting further need to understand game-farm mallard genetic variation and movement across the continent.


Asunto(s)
Genética de Población , Hibridación Genética , Humanos , Animales , Ohio , América del Norte , Patos/genética
8.
PLoS One ; 18(2): e0278905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36809383

RESUMEN

Although most birds are considered to be at least partially monogamous, molecular evidence continues to uncover that many species can have multiple sexual mates. Many species of Waterfowl (Order Anseriformes) consistently deploy alternative breeding strategies, and although cavity nesting species have been well studied, few attempts to understand rates of alternative breeding strategies exist in the Anatini tribe. Here, we assay mitochondrial DNA and thousands of nuclear markers across 20 broods of American black ducks (Anas rubripes; "black duck") that included 19 females and 172 offspring to study population structure as well as types and rates of secondary breeding strategies in coastal North Carolina. First, we report high levels of relatedness among nesting black ducks and offspring and while 17 (of 19) females were of pure black duck descent, three were found to be black duck x mallard (A. platyrhynchos) hybrids. Next, we evaluated for mismatched mitochondrial DNA and paternity identities across each female's clutch to determine types and frequency of alternative or secondary breeding strategies. Although we report that nest parasitism occurred in two nests, 37% (7 of 19) of the sampled nests were multi-paternal as a result of extra-pair copulation. In addition to being part of a mix of strategies used to increase fecundity by successfully breeding females, we posit nest densities providing easier alternative mate access for males also explains high rates of extra-pair copulation among our sampled black ducks. Ultimately, however, while some proportion of females of many species engage in forms of secondary breeding strategies, we conclude that the decision to do so appears to be seasonally flexible for each individual.


Asunto(s)
Cruzamiento , Patos , Humanos , Animales , Masculino , Femenino , North Carolina , Aves , Reproducción , Comportamiento de Nidificación
9.
Sci Rep ; 12(1): 10212, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715515

RESUMEN

Causes for genomic and morphological similarities among recently radiated species are often multifaceted and are further convoluted among species that readily interbreed. Here, we couple genomic and morphological trait comparisons to test the extent that ancestry and gene flow explain the retention of mallard-like traits within a sister species, the Mexican duck. First, we confirm that these taxa remain genetically structured, and that Mexican ducks exhibit an isolation-by-distance pattern. Despite the assumption of wide-spread hybridization, we found only a few late-stage hybrids, all from the southwestern USA. Next, assessing 23 morphological traits, we developed a genetically-vetted morphological key that is > 97% accurate in distinguishing across sex-age cohorts of Mexican ducks, mallards, and hybrids. During key development, we determined that 25% of genetically pure, immature male Mexican ducks of the northern population naturally displayed mallard-like traits in their formative plumage. In fact, applying this key to 55 museum specimens, we identified that only four of the 14 specimens originally classified as phenotypic hybrids were truly hybrids. We discuss how genomic and morphological comparisons shed light into the mechanism(s) underlying the evolution of complex phenotypic traits in recent radiations, and how misunderstanding the true morphological diversity within Mexican ducks resulted in taxonomic revisions that hindered conservation efforts.


Asunto(s)
Patos , Genoma , Animales , Patos/genética , Flujo Génico , Genómica , Hibridación Genética , Masculino
10.
Front Plant Sci ; 13: 860439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401613

RESUMEN

Global climate change has resulted in geographic range shifts of flora and fauna at a global scale. Extreme environments, like the Arctic, are seeing some of the most pronounced changes. This region covers 14% of the Earth's land area, and while many arctic species are widespread, understanding ecotypic variation at the genomic level will be important for elucidating how range shifts will affect ecological processes. Tussock cottongrass (Eriophorum vaginatum L.) is a foundation species of the moist acidic tundra, whose potential decline due to competition from shrubs may affect ecosystem stability in the Arctic. We used double-digest Restriction Site-Associated DNA sequencing to identify genomic variation in 273 individuals of E. vaginatum from 17 sites along a latitudinal gradient in north central Alaska. These sites have been part of 30 + years of ecological research and are inclusive of a region that was part of the Beringian refugium. The data analyses included genomic population structure, demographic models, and genotype by environment association. Genome-wide SNP investigation revealed environmentally associated variation and population structure across the sampled range of E. vaginatum, including a genetic break between populations north and south of treeline. This structure is likely the result of subrefugial isolation, contemporary isolation by resistance, and adaptation. Forty-five candidate loci were identified with genotype-environment association (GEA) analyses, with most identified genes related to abiotic stress. Our results support a hypothesis of limited gene flow based on spatial and environmental factors for E. vaginatum, which in combination with life history traits could limit range expansion of southern ecotypes northward as the tundra warms. This has implications for lower competitive attributes of northern plants of this foundation species likely resulting in changes in ecosystem productivity.

11.
Mol Ecol ; 31(9): 2578-2593, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35263000

RESUMEN

Throughout the speciation process, genomic divergence can be differentially impacted by selective pressures, as well as gene flow and genetic drift. Disentangling the effects of these evolutionary mechanisms remains challenging, especially for nonmodel organisms. Accounting for complex evolutionary histories and contemporary population structure often requires sufficient sample sizes, for which the expense of full genomes remains prohibitive. Here, we demonstrate the utility of partial-genome sequence data for range-wide samples to shed light into the divergence process of two closely related ducks, the Mexican duck (Anas diazi) and mallard (A. platyrhynchos). We determine the role of selective and neutral processes during speciation of Mexican ducks by integrating evolutionary and demographic modelling with genotype-environment and genotype-phenotype association testing. First, evolutionary models and demographic analyses support the hypothesis that Mexican ducks originally diverged ~300,000 years ago in climate refugia arising during a glacial period in southwest North America, and that subsequent environmental selective pressures played a key role in divergence. Mexican ducks then showed cyclical demographic patterns that probably reflected repeated range expansions and contractions, along with bouts of gene flow with mallards during glacial cycles. Finally, we provide evidence that sexual selection acted on several phenotypic traits as a co-evolutionary process, facilitating the development of reproductive barriers that initially arose due to strong ecological selection. More broadly, this work reveals that the genomic and phenotypic patterns observed across species complexes are the result of myriad factors that contribute in dynamic ways to the evolutionary trajectories of a lineage.


Asunto(s)
Aves , Especiación Genética , Adaptación Fisiológica , Animales , Patos/genética , Flujo Génico/genética , América del Norte
12.
PLoS One ; 16(12): e0257105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34855769

RESUMEN

Nest parasitism is a common reproductive strategy used by many species of cavity nesting birds. Among these, the wood duck (Aix sponsa) is known to have evolved very specific strategies of when and whom to parasitize that is often based on population and/or environmental queues. Here, we investigated the genetic relationship of two female wood ducks competing over an artificial nesting box in Delaware, including the continued incubation of one female despite the death and body remains of the other female throughout the incubation process. We test whether such an extreme case of nest parasitism can be explained by relatedness, egg lineage composition, or a combination of other factors. To do so, we extracted genomic DNA from blood and tissue of the females, as well as chorioallantoic membranes of all viable and inviable eggs. Subsequently, we assessed relatedness among females and eggs based on hundreds of nuclear loci and the mitochondrial control region. We concluded that (1) the two incubating females were entirely unrelated, (2) the single clutch is in fact represented by a minimum of four unrelated females, and (3) a single female can lay eggs sired by different males. The latter finding is the first direct evidence for successful extra-pair copulation in wood ducks. With decreasing costs and increasing effectiveness, genomic methods have the potential to provide important insights into more complex ecological and evolutionary tactics of such populations.


Asunto(s)
Patos , Comportamiento de Nidificación , Reproducción , Animales , Delaware , Femenino , Masculino
13.
Animals (Basel) ; 11(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34573643

RESUMEN

Introductions and invasions provide opportunities for interaction and hybridization between colonists and closely related native species. We investigate this phenomenon using the mitochondrial DNA COI and 81,416 base-pairs of overlapping nuclear variation to examine the evolutionary histories and signatures of hybridization among introduced feral Rock Pigeon and Eurasian Collared-Dove and native White-winged and Mourning doves in southwestern North America. First, we report all four species to be highly divergent across loci (overall pair-wise species ΦST range = 0.17-0.70) and provide little evidence for gene flow at evolutionary timescales. Despite this, evidence from multiple population genetics analyses supports the presence of six putative contemporary late-stage hybrids among the 182 sampled individuals. These putative hybrids contain various ancestry combinations, but all involve the most populous species, the Mourning Dove. Next, we use a novel method to reconstruct demographic changes through time using partial genome sequence data. We identify recent, species-specific fluctuations in population size that are likely associated with changing environments since the Miocene and suggest that these fluctuations have influenced the genetic diversity of each dove species in ways that may impact their future persistence. Finally, we discuss the importance of using multiple marker types when attempting to infer complex evolutionary histories and propose important considerations when analyzing populations that were recently established or of domestic origins.

14.
J Molluscan Stud ; 87(3): eyab020, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34276251

RESUMEN

Establishing baseline geographical distributions of extant genetic diversity is increasingly important for future conservation efforts of freshwater species. We analyse the mitochondrial cytochrome c oxidase subunit I (COI) gene to taxonomically characterize 233 samples from recently discovered springsnail populations throughout 17 sites in Arizona, USA. A total of 28 unique COI haplotypes were recovered, with the number of haplotypes ranging from 1 to 4 by population in Arizona. Phylogenetic analyses resulted in haplotypes from 13 of 17 locations in Arizona being successfully identified to species, with five described and three undescribed species in the genus Pyrgulopsis (Hydrobiidae). Future work will require in-depth morphological work to clarify the taxonomic status of these putatively novel species. Importantly, among recovered species, we identified haplotype diversity of the critically endangered Three Forks springsnail, Pyrgulopsis trivialis, in the eastern Gila watershed, which will inform wildlife managers in deciding which source populations to use in reintroduction efforts. We discuss possible causes for observed population structure of Arizona's springsnail populations, with suggestions for the future sampling schemes necessary for the conservation of this uniquely important freshwater mollusc.

15.
Mol Phylogenet Evol ; 161: 107164, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33798675

RESUMEN

Insight into complex evolutionary histories continues to build through broad comparative phylogenomic and population genomic studies. In particular, there is a need to understand the extent and scale that gene flow contributes to standing genomic diversity and the role introgression has played in evolutionary processes such as hybrid speciation. Here, we investigate the evolutionary history of the Mergini tribe (sea ducks) by coupling multi-species comparisons with phylogenomic analyses of thousands of nuclear ddRAD-seq loci, including Z-sex chromosome and autosomal linked loci, and the mitogenome assayed across all extant sea duck species in North America. All sea duck species are strongly structured across all sampled marker types (pair-wise species ΦST > 0.2), with clear genetic assignments of individuals to their respective species, and phylogenetic relationships recapitulate known relationships. Despite strong species integrity, we identify at least 18 putative hybrids; with all but one being late generational backcrosses. Most interesting, we provide the first evidence that an ancestral gene flow event between long-tailed ducks (Clangula hyemalis) and true Eiders (Somateria spp.) not only moved genetic material into the former species, but likely generated a novel species - the Steller's eider (Polysticta stelleri) - via hybrid speciation. Despite generally low contemporary levels of gene flow, we conclude that hybridization has and continues to be an important process that shifts novel genetic variation between species within the tribe Mergini. Finally, we outline methods that permit researchers to contrast genomic patterns of contemporary versus ancestral gene flow when attempting to reconstruct potentially complex evolutionary histories.


Asunto(s)
Patos/genética , Evolución Molecular , Flujo Génico , Genoma/genética , Genómica , Filogenia , Animales , Océanos y Mares
16.
Mol Ecol ; 29(3): 578-595, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31872482

RESUMEN

Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human-mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD-seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game-farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game-farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait-capture array targeting thousands of loci in century-old (1842-1915) and contemporary (2009-2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game-farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game-farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens.


Asunto(s)
Animales Salvajes/genética , Patos/genética , Genoma/genética , Animales , Flujo Génico/genética , Genómica/métodos , Humanos , Hibridación Genética/genética , América del Norte
17.
Mol Ecol ; 28(24): 5203-5216, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31736171

RESUMEN

Interspecific hybridization is recognized as an important process in the evolutionary dynamics of both speciation and the reversal of speciation. However, our understanding of the spatial and temporal patterns of hybridization that erode versus promote species boundaries is incomplete. The endangered, endemic koloa maoli (or Hawaiian duck, Anas wyvilliana) is thought to be threatened with genetic extinction through ongoing hybridization with an introduced congener, the feral mallard (A. platyrhynchos). We investigated spatial and temporal variation in hybrid prevalence in populations throughout the main Hawaiian Islands, using genomic data to characterize population structure of koloa, quantify the extent of hybridization, and compare hybrid proportions over time. To accomplish this, we genotyped 3,308 double-digest restriction-site-associated DNA (ddRAD) loci in 425 putative koloa, mallards, and hybrids from populations across the main Hawaiian Islands. We found that despite a population decline in the last century, koloa genetic diversity is high. There were few hybrids on the island of Kaua'i, home to the largest population of koloa. By contrast, we report that sampled populations outside of Kaua'i can now be characterized as hybrid swarms, in that all individuals sampled were of mixed koloa × mallard ancestry. Further, there is some evidence that these swarms are stable over time. These findings demonstrate spatial variation in the extent and consequences of interspecific hybridization, and highlight how islands or island-like systems with small population sizes may be especially prone to genetic extinction when met with a congener that is not reproductively isolated.


Asunto(s)
Patos/genética , Evolución Molecular , Variación Genética/genética , Hibridación Genética , Animales , Evolución Biológica , ADN/genética , Especies en Peligro de Extinción , Genotipo , Hawaii , Islas
18.
Ecol Evol ; 9(17): 9961-9976, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31534707

RESUMEN

AIM: To investigate the structure and rate of gene flow among populations of habitat-specialized species to understand the ecological and evolutionary processes underpinning their population dynamics and historical demography, including speciation and extinction. LOCATION: Peruvian and Argentine Andes. TAXON: Two subspecies of torrent duck (Merganetta armata). METHODS: We sampled 156 individuals in Peru (M. a. leucogenis; Chillón River, n = 57 and Pachachaca River, n = 49) and Argentina (M. a. armata; Arroyo Grande River, n = 33 and Malargüe River, n = 17), and sequenced the mitochondrial DNA (mtDNA) control region to conduct coarse and fine-scale demographic analyses of population structure. Additionally, to test for differences between subspecies, and across genetic markers with distinct inheritance patterns, a subset of individuals (Peru, n = 10 and Argentina, n = 9) was subjected to partial genome resequencing, obtaining 4,027 autosomal and 189 Z-linked double-digest restriction-associated DNA sequences. RESULTS: Haplotype and nucleotide diversities were higher in Peru than Argentina across all markers. Peruvian and Argentine subspecies showed concordant species-level differences (ΦST mtDNA = 0.82; ΦST autosomal = 0.30; ΦST Z chromosome = 0.45), including no shared mtDNA haplotypes. Demographic parameters estimated for mtDNA using IM and IMa2 analyses, and for autosomal markers using ∂a∂i (isolation-with-migration model), supported an old divergence (mtDNA = 600,000 years before present (ybp), 95% HPD range = 1.2 Mya to 200,000 ybp; and autosomal ∂a∂i = 782,490 ybp), between the two subspecies, characteristic of deeply diverged lineages. The populations were well-differentiated in Argentina but moderately differentiated in Peru, with low unidirectional gene flow in each country. MAIN CONCLUSIONS: We suggest that the South American Arid Diagonal was preexisting and remains a current phylogeographic barrier between the ranges of the two torrent duck subspecies, and the adult territoriality and breeding site fidelity to the rivers define their population structure.

19.
Ecol Evol ; 9(12): 7246-7261, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31380047

RESUMEN

Dispersal shapes demographic processes and therefore is fundamental to understanding biological, ecological, and evolutionary processes acting within populations. However, assessing population connectivity in scoters (Melanitta sp.) is challenging as these species have large spatial distributions that span remote landscapes, have varying nesting distributions (disjunct vs. continuous), exhibit unknown levels of dispersal, and vary in the timing of the formation of pair bonds (winter vs. fall/spring migration) that may influence the distribution of genetic diversity. Here, we used double-digest restriction-associated DNA sequence (ddRAD) and microsatellite genotype data to assess population structure within the three North American species of scoter (black scoter, M. americana; white-winged scoter, M. deglandi; surf scoter, M. perspicillata), and between their European congeners (common scoter, M. nigra; velvet scoter, M. fusca). We uncovered no or weak genomic structure (ddRAD Φ ST < 0.019; microsatellite F ST < 0.004) within North America but high levels of structure among European congeners (ddRAD Φ ST > 0.155, microsatellite F ST > 0.086). The pattern of limited genomic structure within North America is shared with other sea duck species and is often attributed to male-biased dispersal. Further, migratory tendencies (east vs. west) of female surf and white-winged scoters in central Canada are known to vary across years, providing additional opportunities for intracontinental dispersal and a mechanism for the maintenance of genomic connectivity across North America. In contrast, the black scoter had relatively elevated levels of divergence between Alaska and Atlantic sites and a second genetic cluster found in Alaska at ddRAD loci was concordant with its disjunct breeding distribution suggestive of a dispersal barrier (behavioral or physical). Although scoter populations appear to be connected through a dispersal network, a small percentage (<4%) of ddRAD loci had elevated divergence which may be useful in linking areas (nesting, molting, staging, and wintering) throughout the annual cycle.

20.
Mol Ecol ; 28(10): 2594-2609, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30941840

RESUMEN

Recently evolved species typically share genetic variation across their genomes due to incomplete lineage sorting and/or ongoing gene flow. Given only subtle allele frequency differences at most loci and the expectation that divergent selection may affect only a tiny fraction of the genome, distinguishing closely related species based on multi-locus data requires substantial genomic coverage. In this study, we used ddRAD-seq to sample the genomes of five recently diverged, New World "mallards" (Anas spp.), a group of dabbling duck species characterized by diagnosable phenotypic differences but minimal genetic differentiation. With increased genomic sampling, we aimed to characterize population structure within this group and identify genomic regions that may have experienced divergent selection during speciation. We analyzed 3,017 autosomal ddRAD-seq loci and 177 loci from the Z-chromosome. In contrast to previous studies, the ddRAD-seq data were sufficient to assign individuals to their respective species or subspecies and to generate estimates of gene flow in a phylogenetic framework. We find limited evidence of contemporary gene flow between the dichromatic mallard and several monochromatic taxa, but find evidence for historical gene flow between some monochromatic species pairs. We conclude that the overall genetic similarity of these taxa likely reflects retained ancestral polymorphism rather than recent and extensive gene flow. Thus, despite recurring cases of hybridization in this group, our results challenge the current dogma predicting the genetic extinction of the New World monochromatic dabbling ducks via introgressive hybridization with mallards. Moreover, ddRAD-seq data were sufficient to identify previously unknown outlier regions across the Z-chromosome and several autosomal chromosomes that may have been involved in the diversification of species in this recent radiation.


Asunto(s)
Patos/genética , Especiación Genética , Filogenia , Cromosomas Sexuales/genética , Animales , Flujo Génico/genética , Genoma/genética , Genómica , Hibridación Genética , Metagenómica , América del Norte , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...